US009229755B2

a2 United States Patent

Dow et al.

US 9,229,755 B2
*Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

USER DATAGRAM PROTOCOL (UDP)
PACKET MIGRATION IN A VIRTUAL
MACHINE (VM) MIGRATION

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Eli M. Dow, Norwood, NY (US); James
P. Gilchrist, Poughkeepsie, NY (US);
Steven K. Schmidt, Essex Junction, VT
(US); Jessie Yu, Wappingers Falls, NY
(US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/469,994

Filed: Aug. 27,2014

Prior Publication Data

US 2014/0366028 Al Dec. 11, 2014

Related U.S. Application Data

Continuation of application No. 13/690,135, filed on
Nov. 30, 2012, now Pat. No. 8,910,162.

Int. Cl1.

GO6F 9/455 (2006.01)

HO4L 29/06 (2006.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC GO6F 9/45533 (2013.01); GO6F 9/455

(2013.01); GO6F 9/45558 (2013.01); GO6F
9/4856 (2013.01); HO4L 69/164 (2013.01);
GOG6F 2009/4557 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,281,013 B2
2007/0061492 Al
2011/0145471 Al*
2011/0268113 Al*
2012/0030674 Al
2012/0137287 Al* 5/2012
2013/0031544 Al* 1/2013

OTHER PUBLICATIONS

10/2012
3/2007
6/2011

11/2011
2/2012

Mundkur et al.
Van Riel et al.
Corryetal.cooevvvnene 711/6
Suzuki et al.ooe.e. 370/389
Mundkur et al.
Pangetal.cccoeevnnnin 718/1
Sridharan et al. 718/1

Peter Mell et al., “The NIST Definition of Cloud Computing,” Ver-
sion 15; p. 1-2; Oct. 7, 2009.

* cited by examiner

Primary Examiner — Dong Kim
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Steven Chiu

(57) ABSTRACT

Embodiments of the invention relate to receiving, by a first
processor comprising a processing device, an indication that
a migration of a virtual machine from the first processor to a
second processor is to occur. The first processor transmits
user datagram protocol (UDP) packets intended for the vir-
tual machine to the second processor based on the indication.
A signal is transmitted to the virtual machine to enter an
offline state, wherein the offline states comprises a transfer of
at least one of a central processing unit (CPU) state and a
memory state, and wherein the virtual machine is configured
to halt a processing of the UDP packets in response to receiv-
ing the signal. The virtual machine is reactivated once the
migration of the virtual machine from the first processor to the
second processor is complete. The virtual machine is
instructed to resume the processing of the UDP packets.

2 Claims, 5 Drawing Sheets

/-::”"10
L
42. COMPUTER SYSTEM SERVER 28
30 MEMORY 2
e e o
16] sTORAGE
5 SYSTEM
PROCESSING| | L. CACHE .
UNIT - 40~
18 42
24 2
5 I 20
DISPLAY i sy [~ MErwoRKADAPTER]
INTERFACHES} | |
4
EXTERNAL

DEVICES)

U.S. Patent Jan. 5,2016 Sheet 1 of 5 US 9,229,755 B2

e

P

=F

i=
B

TORAL
SN

5

T
R

NETWORK .ﬁB;*‘:F*T-E 2
FIG. 1

E
L s
T

XTERNAL
o

E

US 9,229,755 B2

Sheet 2 of 5

Jan. 5, 2016

U.S. Patent

U.S. Patent Jan. 5,2016 Sheet 3 of 5 US 9,229,755 B2

X

2

L2k

Sousar
o4

P

(&%)

US 9,229,755 B2

Sheet 4 of 5

Jan. 5§, 2016

U.S. Patent

74 T R N
INA m INA m
— 145% —
81y 0cy
JOSIAIQAAH \ JOSIAIQAAH
Y0 90%
7 1A ¢ 1A

\ oty 0% /

¢ty KIowo 10SS001]

0r
[201A(J

US 9,229,755 B2

Sheet 5 of 5

Jan. 5, 2016

U.S. Patent

G Old

01¢S
NA 21BANORY

A

80S
s1oyord paiayng pIemio

A

90¢
SUIHO,, INA 998[d

N\

¥0S
uoneigu

QUI[UO,, AUk ULIOJI]

N

c0¢
UONBIIPUI UOHRISIW DAY

o
O

US 9,229,755 B2

1

USER DATAGRAM PROTOCOL (UDP)
PACKET MIGRATION IN A VIRTUAL
MACHINE (VM) MIGRATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 13/690,135 (Dow et al.), filed on Nov. 30, 2012, which is
herein incorporated by reference in its entirety.

BACKGROUND

The present invention relates to management of virtual
machines (VMs), and more specifically, to a user datagram
protocol (UDP) packet migration in a virtual machine (VM)
migration.

Providers of cloud computing have the competing tasks of
providing desired performance for consumers or end users
while also efficiently allocating the resources used to provide
services to consumers. The resources may be dynamically
allocated by the provider to help achieve these goals. Accord-
ingly, a hardware platform may host a plurality of virtual
machines, wherein each virtual machine corresponds to a
consumer. Efficient use of the hardware platform resources
dictates that the provider place as many virtual machines on
the platform as possible without compromising the consum-
er’s use of the virtual machine and experience. It may be
desirable to move or migrate a virtual machine from one
hardware platform to another to ensure that the customer is
not adversely affected by changes in resources for the virtual
machines.

Environments based on the Transmission Control Protocol
(TCP) are able to continue working through a migration
because TCP windows are generally longer than the “offline”
portion of a virtual machine migration process that suspends
all input/output (I/O) and guest processing while a final pro-
cessing state and other miscellaneous data are sent to a remote
host where execution is subsequently resumed. Another net-
work protocol is the user datagram protocol (UDP) which
does not include guarantees regarding retry or ordering as
compared to TCP.

SUMMARY

An embodiment is directed to a method comprising receiv-
ing, by a first processor comprising a processing device, an
indication that a migration of a virtual machine from the first
processor to a second processor is to occur. The method
further comprises transmitting, by the first processor, user
datagram protocol (UDP) packets intended for the virtual
machine to the second processor based on the indication. The
method further comprises transmitting a signal to the virtual
machine to enter an offline state, wherein the offline states
comprises a transfer of at least one of a central processing unit
(CPU) state and a memory state, and wherein the virtual
machine is configured to halt a processing of the UDP packets
in response to receiving the signal. The method further com-
prises reactivating the virtual machine once the migration of
the virtual machine from the first processor to the second
processor is complete. The method further comprises
instructing the virtual machine to resume the processing of
the UDP packets.

An embodiment is directed to an apparatus comprising at
least one processing device, and memory having instructions
stored thereon. The instructions, when executed by the at least
one processing device, cause the apparatus to receive an indi-

10

30

40

45

50

2

cation that a migration of a virtual machine from the appara-
tus to a processor is to occur. The instructions, when executed
by the at least one processing device, cause the apparatus to
transmit user datagram protocol (UDP) packets intended for
the virtual machine to the processor based on the indication.
The instructions, when executed by the at least one process-
ing device, cause the apparatus to transmit a signal to the
virtual machine to enter an offline state, wherein the offline
states comprises a transfer of at least one of a central process-
ing unit (CPU) state and a memory state associated with the
virtual machine, and wherein the virtual machine is config-
ured to halt a processing of the UDP packets in response to
receiving the signal. The instructions, when executed by the at
least one processing device, cause the apparatus to receive a
second signal indicating that the migration of the virtual
machine from the apparatus to the processor is complete. The
instructions, when executed by the at least one processing
device, cause the apparatus to instruct the virtual machine to
resume the processing of the UDP packets based on the sec-
ond signal.

An embodiment is directed to a computer program product
comprising a computer readable storage medium having
computer readable program code embodied therewith. The
computer readable program code comprises computer read-
able program code configured for receiving, by a first hyper-
visor associated with a first processor, an indication that a
migration of a virtual machine from the first processor to a
second processor is to occur. The computer readable program
code is configured for causing, by the first hypervisor, the first
processor to transmit user datagram protocol (UDP) packets
intended for the virtual machine to a second hypervisor asso-
ciated with the second processor based on the indication. The
computer readable program code is configured for causing,
by the first hypervisor, the first processor to transmit a signal
to the virtual machine to enter an offline state, wherein the
offline states comprises a transfer of at least one of a central
processing unit (CPU) state and a memory state, and wherein
the virtual machine is configured to halt a processing of the
UDP packets in response to receiving the signal. The com-
puter readable program code is configured for reactivating the
virtual machine once the migration of the virtual machine
from the first processor to the second processor is complete.
The computer readable program code is configured for
instructing the virtual machine to resume the processing of
the UDP packets.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention;

FIG. 3 depicts abstraction model layers according to an
embodiment of the present invention;

US 9,229,755 B2

3

FIG. 4 illustrates a computing system for migrating a vir-
tual machine in accordance with an embodiment; and

FIG. 5 illustrates a flow chart of a process for providing
data packets to a migrating virtual machine in accordance
with an embodiment.

DETAILED DESCRIPTION

Embodiments described herein are directed to virtual
machine (VM) migration in computing environments that
utilize the user datagram protocol (UDP) as a basis for trans-
mitting or receiving data. In an embodiment, a hypervisor
buffers UDP packets intended for a VM that has been placed
in an offline state during a migration of the VM from a first
processor to a second processor. When migration ofthe VM is
complete, the hypervisor forwards the butfered UDP packets
to a hypervisor executing on the second processor for pro-
cessing by the migrated VM. In this manner, UDP packets are
not lost during, or as a result of, the migration.

In an embodiment a signal is sent to a hypervisor indicating
that a VM is about to be migrated. Based on receiving the
signal, the hypervisor performs any migration that can be
performed online where the VM remains responsive to the
outside world. Atthe point in time when the hypervisoror VM
determines that the VM must go into an offline phase of the
migration (e.g., a phase where the VM is not performing
computation and is having a critical execution state such as a
central processing unit or “CPU” state and or a memory state
being transferred), the hypervisor buffers inbound UDP pack-
ets intended for the migrating VM. In an embodiment, before
entering the offline phase of migration, the hypervisor sends
a signal (e.g., inband or out of band) to the VM under migra-
tion to halt processing of UDP packets. When the migration
has completed, the hypervisor then retransmits the UDP
packets intended for the VM to a new hypervisor executing
the migrated VM. The VM is then reactivated on the remote
side, where it resumes execution and the retransmitted UDP
packets are delivered. In an embodiment where the VM had
been instructed to buffer UDP packets and not process them,
the hypervisor instructs the VM (e.g., using an inband or out
of band signal) to normally operate on UDP packets after
having optionally reordered its current buffer before process-
ing. The UDP packets may be buffered in kernel or userspace
memory in the guest or hypervisor.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed (e.g., any client-server model).

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized

US 9,229,755 B2

5

or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage

10

15

20

25

30

35

40

45

50

55

60

65

6

media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/O interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples, include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be

US 9,229,755 B2

7

illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide)

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security (not shown) pro-
vides identity verification for cloud consumers and tasks, as
well as protection for data and other resources. User portal
provides access to the cloud computing environment for con-
sumers and system administrators. Service level management
provides cloud computing resource allocation and manage-
ment such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre-ar-
rangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and a mobile desktop for mobile devices (e.g.,
54A, 54C, and 54N, as well as mobile nodes 10 in cloud
computing environment 50) accessing the cloud computing
services.

In one embodiment, one or both of the hardware and soft-
ware layer 60 and the virtualization layer 62 may include edge
components, such as a web server front end and image cache,
as well as an image library store, e.g., in a high-performance
RAID storage area network (SAN). In an exemplary embodi-
ment, an application, such as a virtual machine monitoring
application 70 in the virtualization layer 62, may implement
a process or method for migrating one or more virtual
machines; however, it will be understood that the application
70 may be implemented in any layer. In some embodiments,
the application 70 may buffer packets intended for a migrat-
ing virtual machine and may deliver the buffered packets once
the migration is complete.

Turning now to FI1G. 4, a computing system or environment
400 in accordance with an embodiment is shown. The system
400 may be indicative of a cluster or work group.

10

15

20

25

30

35

40

45

50

55

60

65

8

The system 400 includes three devices, device 1 402,
device 2404, and device 3 406. The devices 402, 404, and 406
may be configured to communicate with one another. For
example, the devices 402, 404, and 406 may be configured to
communicate with one another over wired or wireless con-
nections. While the system 400 is shown as including three
devices, in some embodiments more or fewer than three
devices may be included. In some embodiments, one or more
of'the devices 402, 404, and 406 may include, or be associated
with, one or more of the entities described above in connec-
tion with FIG. 1.

One or more of the devices 402, 404, and 406 may include
one or more components. For example, the device 402 is
shown in FIG. 4 as including a processor 408 and memory
410. The memory 410 may be configured to store data or
information. The memory 410 may have instructions stored
thereon that, when executed by the processor 408, cause the
device 402 to perform one or more methodological acts, such
as those described herein. In some embodiments, the device
402 may include more than one processor 408. The device
402 may include additional components not shown in FIG. 4.
For example, the device 402 may include a transceiver to
facilitate communications with the devices 404 and 406.

The device 402 is shown in FIG. 4 as being coupled to the
device 404 via a link 412. The device 404 is shown in FIG. 4
as being coupled to the device 406 via a link 414. The device
406 is shown as being coupled to the device 402 via a link 416.
In some embodiments, one or more of the links may be
optional. For example, if link 416 is omitted, then the device
402 and the device 406 might not communicate with one
another, or may communicate with one another via the device
404 serving as an intermediary or router of communications
between the devices 402 and 406.

One or more of the links 412, 414, and 416 may correspond
to a transmission path for a packet (e.g., a UDP packet). The
links 412, 414, and 416 may be used to share or transfer
information or data from a first device to a second device.
Such transfer may take place in response to, or based on, a
machine migration (e.g., virtual machine migration).

In some embodiments, one or more of the devices or
machines 402, 404, and 406 may include a hypervisor. For
example, as shown in FIG. 4, the device 404 includes a
hypervisor 418, and the device 406 includes a hypervisor 420.

Assuming a migration, such as a migration of data and/or
processing state associated with a virtual machine (VM) or
guest 422, from the device 404 to the device 406, the hyper-
visor 418 may receive a signal indicating that the VM 422 is
about to be migrated. The hypervisor 418 may opt to perform
any migration that may be considered to be “online” where
the VM 422 remains responsive to the outside world.

At a time when the hypervisor 418 or VM 422 determines
that the VM 422 must go into an offline phase of the migra-
tion, where the offline phase of the migration may correspond
to the VM 422 not performing computations and/or having an
execution state such as a CPU state or memory state trans-
ferred, the hypervisor 418 may buffer inbound packets (e.g.,
UDP packets) intended for the VM 422. In some embodi-
ments, the hypervisor 418 may send an in-band or out-of-
band signal to the VM 422 under migration to halt processing
of packets (e.g., UDP packets) before entry of the offline
phase.

In some embodiments, an ordering of packets may be pro-
vided. For example, if packets are buffered on behalf of the
migrating VM 422, the packets may be buffered in order, such
that when the VM 422 resumes operation or returns online
following the migration, the packets are presented to the VM
422 in sequence. In this manner, efficiency may be enhanced

US 9,229,755 B2

9

by minimizing or eliminating the amount of packet re-order-
ing that needs to be undertaken by the VM 422.

When migration has completed, the hypervisor 418 may
retransmit the buffered packets intended for the VM 422 to the
hypervisor 420 for delivery. Alternatively, the packets may be
provided to the hypervisor 420 as the migration of the VM
422 from the device 404 to the device 406 is occurring.

The VM 422 may be reactivated on the remote machine
(e.g., device 406), whereby the VM 422 may resume execu-
tion and the packets that were buffered (if any) may be pro-
vided to the VM 422 for processing. If the VM 422 had been
instructed to not process packets prior to entry of the offline
phase, the hypervisor 418 may signal or instruct (in-band or
out-of-band) the hypervisor 420 and/or the VM 422 to nor-
mally operate on such packets, potentially after having reor-
dered such packets.

In some embodiments, packets may be buffered in a kernel
or user-space memory in a VM/guest (e.g., VM/guest 422) or
a hypervisor (e.g., hypervisor 418).

Turning now to FIG. 5, a flow chart of an exemplary
method 500 is shown. The method 500 may be executed in
connection with one or more systems, devices, or compo-
nents, such as those described herein. In some embodiments,
the method 500 may be executed in connection with the
application 70 of FIG. 3. The method 500 may be executed in
order to migrate a VM or guest from a first location (e.g., a
first device or machine) to a second location (e.g., a second
device or machine).

In block 502, a migration indication may be received. The
migration indication may be received by, e.g., a hypervisor
associated with the first location. The migration indication
may be received for any number of reasons. For example, a
determination may be made that the second location provides
for more reliable or less expensive computing resources, for
purposes of load balancing, etc.

In block 504, the hypervisor associated with the first loca-
tion may perform any migration considered online where the
VM remains responsive to the outside world or one or more
inputs, optionally based on the indication of block 502.

In block 506, the hypervisor associated with the first loca-
tion may place the VM in an offline state. As part of block 506,
the hypervisor associated with the first location may buffer
inbound packets intended for the VM. As part of block 506,
the hypervisor associated with the first location may instruct
the VM to halt processing of packets. As part of block 506, the
migration of the VM may occur.

In block 508, the hypervisor associated with the first loca-
tion may forward or transmit any packets that it may have
buffered as part of block 506. The hypervisor associated with
the first location may: (1) forward the packets to the VM at the
second location, or (2) may forward the packets to a second
hypervisor associated with the second location for forward-
ing to the VM.

In block 510, the VM may be reactivated at the second
location once the migration is complete. As part of block 510,
the hypervisor associated with the first location may instruct
the hypervisor associated with the second location or the VM
to process any packets that may have been subject of the
“halt” of block 506.

The method 500 is illustrative. In some embodiments, one
or more of the blocks (or a portion thereof) may be optional.
In some embodiments, the blocks may execute in an order or
sequence that is different from what is shown in FIG. 5. In
some embodiments, one or more additional blocks not shown
may be included.

Technical effects and benefits include increasing or
enhancing resiliency of one or more computing devices, such

10

15

20

25

30

35

40

45

50

55

60

65

10

as UDP based servers when running on a virtualized platform.
Such servers may be operative in connection with, e.g., the
Network Time Protocol (NTP), the Dynamic Host Configu-
ration Protocol (DHCP), the Voice over Internet Protocol
(VoIP), etc.

Aspects of the disclosure may be implemented in connec-
tion with high performance networks, or in environments
where performance trumps the need for strict ordering of data
packets. Aspects of the disclosure may be exploited or imple-
mented in environments where servers are subject to large
loads (e.g., a large number of client computers and/or a large
volume of data), or where servers are migrated frequently. For
example, such migration may take place in cloud data centers
during load balancing or other migration operations that may
reduce cost by moving computation activities to where the
computation is inexpensive.

Aspects of the disclosure may be implemented in connec-
tion with, e.g., point of sale (POS) systems, accounting sys-
tems, database systems, telephone and voice over internet
protocol (VoIP) systems, etc.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Further, as will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)

US 9,229,755 B2

11

of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination of the fore-
going.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of

30

40

45

55

12

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. An apparatus comprising:

at least one processing device; and

memory having instructions stored thereon that, when

executed by the at least one processing device, cause the

apparatus to:

receive an indication by a first hypervisor that a migra-
tion of a virtual machine from the first hypervisor
associated with the apparatus to a second hypervisor
associated with a processor is to occur;

transmit a first signal from the first hypervisor to the
virtual machine to enter an offline state, wherein the
offline states comprises a transter of a central process-
ing unit (CPU) state and a memory state associated
with the virtual machine to the second hypervisor, and
wherein the virtual machine is configured to halt a
processing of user datagram protocol (UDP) packets
in response to receiving the first signal;

buffer UDP packets intended for the virtual machine in
an userspace memory by the first hypervisor based on
the virtual machine entering the offline state, wherein
the UDP packets are not received in order, but are
buffered in order;

buffer an additional UDP packets intended for the virtual
machine in a kernel space of the first hypervisor based
onthe virtual machine having entered the offline state,
wherein the additional UDP packets are not received
in order, but are buffered in order;

receive a second signal indicating that the migration of
the virtual machine from the first hypervisor associ-
ated with the apparatus to the second hypervisor asso-
ciated with the processor is complete;

transmit the buffered UDP packets and the additional
buffered UDP packets to the second hypervisor asso-
ciated with the processor, wherein the transmission of

US 9,229,755 B2

13

the buffered UDP packets and the additional buffered
UDP packets to the second hypervisor is based on the
ordering of the UDP packets and the additional buft-
ered UDP packets to enable the virtual machine to
process the buffered UDP packets and the additional
buffered UDP packets without having to re-order the
UDP packets and the additional UDP packets at the
processor; and

instruct the virtual machine to resume the processing of
the UDP packets and the additional UDP packets
based on the second signal.

2. A computer program product comprising:

a non-transitory computer readable storage medium hav-

ing computer readable program code embodied there-

with, the computer readable program code comprising

instructions for:

receiving an indication by a first hypervisor that a migra-
tion of a virtual machine from the first hypervisor
associated with the apparatus to a second hypervisor
associated with a processor is to occur;

transmitting a first signal from the first hypervisor to the
virtual machine to enter an offline state, wherein the
offline states comprises a transtfer of a central process-
ing unit (CPU) state and a memory state associated
with the virtual machine to the second hypervisor, and
wherein the virtual machine is configured to halt a
processing of user datagram protocol (UDP) packets
in response to receiving the first signal;

10

15

20

25

14

buffering UDP packets intended for the virtual machine
in an userspace memory by the first hypervisor based
on the virtual machine entering the offline state,
wherein the UDP packets are not received in order, but
are buffered in order;

buffering an additional UDP packets intended for the
virtual machine in a kernel space of the first hypervi-
sor based on the virtual machine having entered the
offline state, wherein the additional UDP packets are
not received in order, but are buffered in order;

receiving a second signal indicating that the migration of
the virtual machine from the first hypervisor associ-
ated with the apparatus to the second hypervisor asso-
ciated with the processor is complete;

transmitting the buffered UDP packets and the addi-
tional buffered UDP packets to the second hypervisor
associated with the processor, wherein the transmis-
sion of the buffered UDP packets and the additional
buffered UDP packets to the second hypervisor is
based on the ordering of the UDP packets and the
additional buffered UDP packets to enable the virtual
machine to process the buffered UDP packets and the
additional buffered UDP packets without having to
re-order the UDP packets and the additional buffered
UDP packets at the processor; and

instructing the virtual machine to resume the processing
of'the UDP packets and the additional buffered UDP
packets based on the second signal.

#* #* #* #* #*

